Missense mutations in SH2D1A identified in patients with X-linked lymphoproliferative disease differentially affect the expression and function of SAP.
نویسندگان
چکیده
X-linked lymphoproliferative disease (XLP) is an immunodeficiency resulting from mutations in SH2D1A, which encodes signalling lymphocytic activation molecule (SLAM)-associated protein (SAP). In addition to SLAM, SAP associates with several other cell-surface receptors including 2B4 (CD244), Ly9 (CD229), CD84 and NTB-A. SAP contains a single src-homology-2 domain and acts as an intracellular adaptor protein by recruiting the protein tyrosine kinase FynT to the cytoplasmic domains of some of these receptors, which results in the initiation of specific downstream signal transduction pathways. XLP is likely to result from perturbed signalling through one or more of these SAP-associating receptors. In this study, we identified missense (Y54C, I84T and F87S) and insertion (fs82 --> X103) mutations in four different kindreds affected by XLP. Each mutation dramatically reduced the half-life of SAP, thus diminishing its expression in primary lymphocytes as well as in transfected cell lines. Interestingly, although the Y54C and F87S mutations compromised the ability of SAP to associate with different receptors, the I84T mutation had no effect on the ability of SAP to bind SLAM, CD84 or 2B4. However, signalling downstream of SLAM was reduced in the presence of SAP bearing the I84T mutation. These findings indicate that, irrespective of the type of mutation, signalling through SAP-associating receptors in XLP can be impaired by reducing the expression of SAP, the ability of SAP to bind surface receptors and/or its ability to activate signal transduction downstream of the SLAM-SAP complex.
منابع مشابه
X-linked lymphoproliferative syndromes: brothers or distant cousins?
X-linked lymphoproliferative disease (XLP1), described in the mid-1970s and molecularly defined in 1998, and XLP2, reported in 2006, are prematurely lethal genetic immunodeficiencies that share susceptibility to overwhelming inflammatory responses to certain infectious triggers. Signaling lymphocytic activation molecule-associated protein (SAP; encoded by SH2D1A) is mutated in XLP1, and X-linke...
متن کاملRapid detection of intracellular SH2D1A protein in cytotoxic lymphocytes from patients with X-linked lymphoproliferative disease and their family members.
Mutations in the SH2D1A gene have been described in most patients with the clinical syndrome of X-linked lymphoproliferative disease (XLP). The diagnosis of XLP is still difficult given its clinical heterogeneity and the lack of a readily available rapid diagnostic laboratory test, particularly in patients without a family history of XLP. XLP should always be a consideration in males with Epste...
متن کاملEpstein-Barr virus LMP1 inhibits the expression of SAP gene and upregulates Th1 cytokines in the pathogenesis of hemophagocytic syndrome.
The primary infection of Epstein-Barr virus (EBV) may result in fatal infectious mononucleosis or hemophagocytic syndrome (HPS) in 2 diseases; that is, X-linked lymphoproliferative disorder (XLP) and hemophagocytic lymphohistiocytosis (HLH). XLP is linked to mutations of the SAP/SH2D1A gene with dysregulated T-cell activation in response to EBV infection. Patients with sporadic HLH, however, us...
متن کاملSAP gene transfer restores cellular and humoral immune function in a murine model of X-linked lymphoproliferative disease.
X-linked lymphoproliferative disease (XLP1) arises from mutations in the gene encoding SLAM-associated protein (SAP) and leads to abnormalities of NKT-cell development, NK-cell cytotoxicity, and T-dependent humoral function. Curative treatment is limited to allogeneic hematopoietic stem cell (HSC) transplantation. We tested whether HSC gene therapy could correct the multilineage defects seen in...
متن کاملRegulation of natural cytotoxicity by the adaptor SAP and the Src-related kinase Fyn
SAP is an adaptor protein that is expressed in NK and T cells. It is mutated in humans who have X-linked lymphoproliferative (XLP) disease. By interacting with SLAM family receptors, SAP enables tyrosine phosphorylation signaling of these receptors by its ability to recruit the Src-related kinase, Fyn. Here, we analyzed the role of SAP in NK cell functions using the SAP-deficient mouse model. O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International immunology
دوره 18 7 شماره
صفحات -
تاریخ انتشار 2006